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FIDIL (for FInite DIfference Language) is a language supporting finite 
difference and particle method computations. It extends the semantic do­
main of FORTRAN-like algebraic languages with facilitie~ for construction, 
composition, refinement, and other manipulation of grids-called domains­
and for performing computations on functions defined over these domains. 
FIDIL is an attempt to automate much of the routine bookkeeping that forms 
a large part of many programs involving PD Es, and to bring the semantic 
level of these programs closer to that at which the algorithms are conceived 
and published. 

This report gives the current definition of the FIDIL language. We expect 
the definition to evolve rapidly with experience. 

1 Notation 

In BNF syntactic descriptions, a construct of the form "{C ... }" indicates 
o or more instances of the C. A construct of the form "{C (f •• • }," where 
(f is a punctuation mark, indicates 0 or more instances of C separated by (f 

characters. A superscripted '+' after the closing brace indicates 1 or more 
instead of 0 or more. A construct surrounded by square brackets ([]) indicates 
o or 1 instances of the construct. A list of BNF clauses separated by vertical 
bars (I) denote alternatives. Set braces, square brackets, vertical bars, and 
other meta-syntactic marks that are intended as terminal symbols in the 
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grammar are surrounded by single quotes (e.g., '[' and ']'). Other terminal 
symbols may also be placed in single quotes, as clarity dictates. 

Non-terminal symbols appear within angle brackets «». Parts of the 
symbol that appear in slanted type are comments for syntactic purposes, but 
may have semantic significance. For example, "<infix operator>" is syntac­
tically any operator, but must also appear within the scope of a declaration 
for that operator as an infix operator. Certain non-terminals are not defined; 
their definitions (which may be context-sensitive) are implied by their names. 

2 Lexical Details 

FIDIL source text is generally free-form. Blanks or punctuation must delimit 
each end of all keywords, identifiers, and numbers, and may not appear within 
them. Blanks or non-operator characters (see below) must delimit each end 
of all operators, and may not appear within them. Beginnings and ends 
of lines, comments, and tabs all count as blanks outside of string literals. 
Blanks are insignificant except as delimiters or characters in string literals. 
Keywords, which in the rest of this document are indicated by bold face type, 
are reserved. 

Identifiers have the following, fairly conventional, syntax. 

<identifier> ::= <letter> { <letter or digit> ... } 
<letter> ::= 

'a' 1 ... 1 'z' I 'A' 1 ... 1 'z' I '-' 

<digit> ::= 
'0' I ... \ '9' 

Identifiers may be of any length. The cases of letters composing the identifier 
are significant; for example the identifier 'x' is distinct from 'X'. 

Numeric literals are formed according to the following syntax. 

<number> ::= 
<integer literal> [ 'i' 1 
<real literal> [ 'i' J 

<integer literal> ::= 
{ <digit> ... } + 

<real literal> ::= 
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<integer literal> <exponent> 
<integer literal> '.' [ <integer literal> [ <exponent> ] ] 
'.' <integer literal> [ <exponent> ] 

<sign> ::= '+' I '-' 
<exponent> ::= 

E [ [ <sign> ] <integer literal> ] 
D [ [ <sign> ] <integer literal> ] 

The letter 'i' appended to a number (without intervening blanks) indicates 
a purely imaginary quantity. The letter 'D' in the exponent of a real literal 
indicates a long real quantity and 'E' denotes a short real quantity. In the 
absence of such an indication, 'D' is assumed. All of the letters 'i', 'E" and 
'D' in these contexts may appear in either case. When the integer literal 
in an exponent is missing, it defaults to o. Programmers can specify signed 
numbers as expressions involving a numeric litera] and a unary minus or plus 
operator. 

String literals denote arrays of characters (type [1 .. n] char, for n ~ 
o the number of characters.) They have the following syntax. 

<string literal> ::= 
'II' { <string literal character> ... } 'II' 

<string literal character> ::= 

<any character other than II and end of line> 
) \) <any character other than end of line> 

Characters following a backslash are interpreted as in C. 
Comments begin with '/*' and end with '*/'. They may span any number 

of lines. A '/*' sequence inside a comment is ignored. 

3 Basic Program Structure 

Syntax 

<compilation> ::= {<compi1ation item> ';' ... } [ ';' ] 
<compilation item> ::= 

<outer declaration> 
export { <identifier> , ... } + 
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<outer declaration> ::= 

Semantics 

[ external ] <variable declaration> 
<constant declaration list> 
<operator declaration> 
<pragma> 

A compilation is a collection of declarations of variables, subprograms, 
and other constants, together with directives for linking together declarations 
in separately processed compilations. A program is a collection of one or more 
compilations that is sufficiently complete to execute. 

Each outer declaration has a scope that begins at the defining instance 
of the entity declared and continues to the end of the compilation. The 
exports clause extends the scope of the declaration of any identifier listed 
to other compilations that reference the identifier in external declarations. 
Types may not be exported (but the #include preprocessor directive can 
give the effect of exporting and importing types.) An external declaration is 
either a variable declaration prefixed by the keyword external or a subpro­
gram constant defined with a literal whose body is external (see section 7.2). 
In any compilation, there must be exactly one non-external declaration of 
each identifier in an exports list (such a declaration is called an exported 
declaration) . 

When the compilations forming a program are linked, there must be at 
most one exported declaration for any identifier. There must be an exported 
declaration for every external variable and for every external subprogram 
for which there is a call in one of the compilations. The type and class 
(variable or constant) of every external dedaration must match that of the 
corresponding exported declaration. 

Every program (but not every compilation) must contain a distinguished 
procedure main. Execution of the program consists of first executing all outer 
declarations in order (that is, in textua.l order within each compilation, with 
compilations executed in an order specified to the linker) and then calling 
the procedure main. 

Examples 

export current_parameters, force-In, nd; 
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let 
force..fn = proc (Position x) -> Force: ... ; 
,* Exported function. *1 

[1 3] long real current_parameters; 
1* Exported variable *1 

4 Preprocessing 

It is often useful to be able to group shared definitions in header files that 
can be incorporated in other source files without fear of transcription error. 
For this purpose, FIDIL uses the same preprocessing as is provided by the 
C language. Source lines beginning with the character '#' are assumed to 
be preprocessor directives. A directive of the form 

'include llfile.name" 

will insert the contents of the named file in place of the directive. 

5 Declarations 

Syntax 

<constant declaration list> ::= 
let { <constant declaration> , ... } + 
extend { <subprogram constant declaration> , ... } + 

<constant declaration> ::= 

<identifier> = <expression> 
'(' { <identifier> , ... }+ ')' = <expression> 
<operator> = <subprogram expression> 
<identifier> = <type> 

<variable declaration> ::= 
<type> { <identifier> , ... } + 
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Semantics 
A scope is a section of program text. Certain program constructs deter­

mine a defining scope. For example, the text of a subprogram literal is a 
defining scope. The scope of a declaration is the section of program text to 
which it applies. It begins at the point of the declaration (i.e., it includes 
the text of the declaration itself) and continues to the end of the innermost 
defining scope in which that declaration appears. The meaning of a given 
instance of an identifier or operator is governed by the declarations in whose 
scope it appears. When more than one declaration is present, the one that 
applies is determined by the rules for resolving ambiguity in section 5.1. 

Some declarations do not themselves indicate the creation of a declared 
entity, but rather make reference to another declaration that appears else­
where for the purpose of enlarging that declaration's scope. We refer to such 
definitions collectively as incomplete declarations, and all others as complete 
declarations. The external declarations form one kind of incomplete dec­
larations. The other kind is the forward declaration, defined described in 
section 7.2. External declarations may be used to enlarge the scope of a 
declaration in one compilation to another compilation. Forward declarations 
may be used to enlarge the scope of a subprogram backwards from its com­
plete definition so as to permit mutual recursion. They may also be used 
for documentation. It is not necessary that there be a complete declaration 
corresponding to a given incomplete declaration if the entity created by the 
definition is never referenced in the text of a compilation. 

Each execution of a complete declaration creates an instance of the de­
clared entity (a variable, type, or constant). Likewise, every execution of 
the text forming a defining scope creates an instance of that defining scope, 
which vanishes when that execution of the defining scope completes. The 
extent of an instance of a declaration is the period of execution time during 
which that instance exists. This extends from the execution of the decla­
ration itself until exit from the instance of the defining scope during which 
the declaration was executed. Outer declarations each have a single instance 
whose extent ends only upon termination of the entire program. 

Constant declarations define identifiers and operators to the left of the 
equals (=) signs to denote the values (subprograms are also values) or types 
to the right of the equals signs. Values are computed when the declaration 
is executed. When the defining expression is a composite object (a map or 
record), the left side may be a list of identifiers in parentheses, which are 
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ascribed the values of the components of the defining expression according 
to position. There must be exactly as many identifiers as components. 

The declarations in a constant declaration list may either be opaque or 
transparent, depending on .the keyword that heads the list-let or extend, 
respectively. Informally, opaque declarations hide previous declarations of 
the same identifiers, while transparent declarations introduce additional pos­
sible interpretations of identifiers hiding previous ones. Variable declarations 
and formal parameter declarations are also opaque. Section 5.1 defines these 
terms more precisely. 

Identifiers may also be defined to denote types. Types may not be defined 
in transparent declarations. Section 6 describes the possible definitions for 
such identifiers. 

Examples 

let 
nd = 3. 1* Simple scalar *1 
Force = [1 .. nd] long real, 1* Type *1 
(xO, xi, x2) = V; 1* Where V is a vector dimensioned 1 .. 3 *1 

5.1 Resolving ambiguity 

When an instance of an identifier appears in the scope of more than one dec­
laration of that identifier, there are two ways of resolving the resulting ambi­
guity. First, certain declarations hide previous ones due to opacity. Second, 
the type-consistency rules (which govern, for example, the required types for 
subprogram parameters) restrict the set of admissible interpretations of an 
instance. 

An opaque declaration of an identifier (as defined in section 5) hides any 
preceding declaration of that identifier throughout the scope of the opaque 
declaration. As an aid to catching certain kinds of error, an opaque declara­
tion may not hide a declaration in the same defining scope. 

When, after considering opacity, there are still multiple declarations cov­
ering a particular instance-in which case the declared identifier or operator 
is said to be overloaded-there must be a single interpretation that is con­
sistent with the type rules of the language. In general, the interpretations 
of entire sets of instances must be determined simultaneously. A program 
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is unambiguous if exactly one choice of eligible declarations for each of its 
identifier instances yields a result in which every (sub )expression and object 
has a correct type for its context. 

5.2 Subprogram and Operator Declarations 

Syntax 

<operator> ::= 
<predefined operator> 
<other operator> 

<other operator> ::= 
<identifier> 
<operator character> [ <operator character> [ <operator character> ]] 
'(' <operator character> [ <operator character> ] ')' 

<operator character> ::= 

'*' I ,/, I '+' I '-' I '<' I '>' I '=' 
(4)' I '#) I 'Ye' 1 '1'1 't' I ,-, I ,-, 

<operator declaration> ::= 

Semantics 

prec <predefined operator> operator { <other operator> , ... } + ; 
postfix operator { <other operator> , ... } + ; 

An ordinary subprogram is declared by a constant declaration whose 
right-hand side is a subprogram literal. A subprogram's designator may 
be an operator, in which case calls on the subprogram take the form of ex­
pressions in which the designator acts as a prefix, infix (binary), or postfix 
operator. Prefix and postfix operators must be declared with one argument; 
infix (binary) operators must be declared with two. Declarations of oper­
ators as infix versus prefix operators are distinguished by the numbers of 
arguments. When an identifier is an operator, it is reserved for use as an 
operator only. In a given compilation, an operator may be overloaded to be 
both an infix and a prefix operator but no other combination is allowed. 

Any 'other operator' used in a program must be declared in an operator 
declaration before its first appearance in either an expression or a subpro­
gram designator spec. All such operators are left associative and have the 
same precedence as the predefined operator that appears in their operator 
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declaration. An operator may appear in any number of operator declarations 
within a single compilation, but must be given the same precedence in each. 
All postfix operators have the highest precedence. 

6 Data Types and Type Constructors 

Syntax 

<type> :!= 
<user-defined type identifier> 
< basic scalar type> 
<record type> 
<domain type> 
<map type> 
<su bprogram type> 

Semantics 
FIDIL supports several classes of data type, and allows the programmer to 

define new types within some of those classes. The following sections describe 
the type denotations. Identifiers defined to be types may be used where type 
names are allowed (e.g., to define variables or the types of parameters.) 

In several places, we will refer to two types as being equivalent. A type 
is always equivalent to itself. The following sections define type equivalence 
for particular classes of types. We will also refer to types being assignment 
compatible. We say that a type TI is assignment compatible with type T2 if 
values of type Tl are allowed to be assigned to objects of type T2 , or passed 
as value parameters to formals of type T7,- Equivalent types are always as­
signment compatible. The following sections define assignment compatibility 
for each type class. 

6.1 Basic Scalar Types 

Syntax 

<basic scalar type> ::= 

[ long] integer 
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Semantics 

[ long] real 
[ long ] complex 
logical 
char 

The basic scalar types are the familiar numeric, logical (true/false valued), 
and character types. The meaning of the qualifier "long" is implementation­
dependent. In the case of real and complex types, it is intended to correspond 
to double-precision declarations in FORTRAN. It is not necessary for long 
quantities to have a precision or range different from non-long quantities. 

Two scalar types are equivalent if and only if their denotations are equiv­
alent. A short scalar type is assignment compatible with the corresponding 
long type (but not the reverse). 

6.2 Record Types 

Syntax 

<record type> ::= 
struct T { <field group> ; ... } + [ ; ] ']' 

<field group> ::= 
<type> { <identifier> , ... } 

Semantics 
A value or object having a record type is composed of fields as indicated 

in the definition of the record type. If T1 , ••• ,Tn are type denotations, then 

let R = struct [ Tl Xn,X12, ... ; ..• Tn X n}, ... ] 
R x; 

defines R to be a record type and x to be a single variable of that type. Each 
R consists of fields, which are accessed by (prefix) selectors named Xij' The 
syntax is identical to that for function calls. Like subprograms in general, 
record field selector names may be overloaded. 

A record type M is equivalent to type Al' if and only if M' is a record 
type with the same number of fields in the same order with the same names, 
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and the type of each field of M is equivalent to the corresponding field's type 
in M'. Only equivalent record types are assignment compatible. 

6.3 Map and Domain Types 

Syntax 

<domain type> ::= 
domain 
domain' [' <integer expression> ']' 

<map type> ::= 
[ flex] <unspecific map domain> <type> 

<specific map domain> <type> 
valtype '(' <domain expression> ')' 

<unspecific map domain> ::= 
'(' [ '.' < integer expression> ) 'J' 

<specific map domain> ::= 
'[' < domain expression> 'J' 
<rectangular domain constructor> 

An n-dimensional domain is a subset of zn, and has a domain type de­
noted domain En] We call n the arity of the domain. An element of a 
one-dimensional domain is an integer; an element of an n-dimensional do­
main, for n > 1, is itself a map with type [1 .. n] integer; that is, it is a 
tuple of n integers. The notation valtype(D) is an abbreviation of the type 
[1 .. n] integer, where n > 1 is the arity of D, or of the type integer if 
n = 1. Two domain types are equivalent if their arity is identical. 

A map is a mapping from a domain to some codomain; map types are 
an extension of ordinary array types. Two map types are equivalent if their 
domains have the same arity, they have the same flexibility (indicated by 
the presence or absence of the keyword flex), a.nd their codomain types are 
identicaL Two map types are assignment compatible if both domains have 
the same arity and the codomain types are equivalent. A map type is said to 
be unspecific if it is not flexible and either has an unspecific map domain or an 
unspecific codomain. An unspecific domain is denoted [] (one-dimensional) 
or [*n] (n-dimensional). Record types are unspecific if they have at least 
one unspecific field type. 
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The modifier flex indicates that variables of the type have a modifiable 
domain. If M is a map type denoted by 

flex [*n] T 

and X is a variable of type M, then it is legal to assign to domainOf(X) 
and it is legal to assign to X a map with a domain differing from that of 
X. In general, T may be a type with map components that themselves have 
unspecified domains. An assignment to X will set those domains as well as 
the domain of X. The domain of an individual component of X, however, 
cannot be changed independently of the rest of X, unless that component has 
a flexible type itself (see the examples). A variable declared to have a flexible 
type initially has all flexible domains (of it and its components) initialized to 
the empty domain. A variable may not be declared with an unspecific type. 
Unspecific types are mainly intended, instead, for use in formal parameter 
specifications. 

Examples 

let 
FlexTabType = flex [] struct [ [J integer A; integer B ], 
FlexRectType = flex [] [] integer, 
RaggedType = [] flex [] integerJ 
FlexRaggedType = flex [] flex [] integer, 
PairRaggedType = [1 .. 2] flex [] integer, 
PartRectType = [1 .. 3] [] integer, 
ARectType = [1 .. 10] [0 .. 9] integer, 
F = proc (ARectType X; ref RaggedType y) ... ; 

FlexRectType Q; 
FlexRaggedType R; 
ARectType S; 

1* RaggedType T; 
1* PartRectType U; 
PairRaggedType V; 

ILLEGAL (unspecific domain) *1 
ILLEGAL (unspecific domain in codomain) *1 
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Q : = [ [1, 2 » 3], [7 t 8 • 9] ]; 
Q := [ [0,1], [9,10] ]; 
/* Q : = [ [0,1], ['r,8, 9] ]; ILLEGAL ASSIGNMENT (not rectangular) */ 
R .- [ [0,1], [7,8.,9] J; 

6.4 Subprogram Types 

Syntax 

<subprogram type> ::= <explicit subprogram header> 

Semantics 
Explicit headers (see section 7.2) supply the names and types of formal 

parameters to a subprogram literal. When used as types, they match any 
subprogram of the same class taking the same number and equivalent types 
of arguments, and returning an equivalent type. 

7 Expressions and Statements 

Syntax 

<statement> ::= 
< expression> 
<control statement> 
<assignment> 

<expression> ::= 
<subprogram literal> 
< expression2 > 

expression2 ::= <primary> 
I <prefix operator> <expression2> 
I <expression2> <infix operator> <expression2> 

<primary> ::= 
<number> 
<string literal> 
true 
false 
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<identifier> 
proc <operator> 
<subprogram closure> 
<cast> 
<constructor> 
<primary> <postfix operator> 
<indexed expression> 
<control expression> 
( <expression> ) 

<predefined operator> ::= 

** I (0 I <(0) 

* I / I rem I mod I div I < < 
+ I - I (+) 1# 
= I < I > I <= I >= I /= I in 
and I or I not I on 

As given, this grammar is ambiguous; the ambiguity is resolved by priority 
and grouping rules. In the listing above, the priorities of operators listed on 
the same line are identical; those of operators listed on later lines decreases. 
Operators group to the left, except for '**', which groups to the right. 

Semantics 
The primaries true and false denote the logical constant values. 
The primary "proc <operator>" denotes the subprogram denoted by 

the specified operator. (It is used in contexts where, for example, the binary 
function '+' is to be passed as a parameter.) 

The following sections describe the other kinds of expressions and pri­
maries. 

7.1 Control Expressions and Statements 

Syntax 

<control expression> ::= 
<if expression> 

I begin <block> end 
<control statement> ::= 
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<loop statement> 
<exit statement> 

<if expression> ::= 
if <guard> then <block> 
{ elsif <guard> then <block> ... } 
[ else <block> ] 

fi 
<guard> ::= 

< logical expression> 
< logical map expression> 

<loop statement> ::= 
[ <loop type> <control clause> ] 

do <block> od 
<loop type> ::= 

for 
I foraH 

<control clause> ::= 
[ <control identifiers clause> from] < domain expression> 

[ by <integer vector expression> ] 
<control identifiers clause> ::= 

<identifier> 
I '[' { <identifier> , ... } + 'J' 

<block> ::= 
{ <block clause> ';' ... }+ [ ';' ] 

<block clause> ::= 
<constant declaration list> 
<variable declaration> 
<statement> 
<pragma> 

<exit statement> ::= 

Semantics 

return [ <expression> ] 
exit 

The terms control expression and control statement generally refer to con-
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structs whose components are not necessarily evaluated in applicative order. 
An if-expression provides for conditional evaluation; it selects values from 

its constituent blocks depending on the values of its guards. The guards may 
either all be logical expressions, or they may all be maps with identical 
domains and codomain logical. 

When its guards are logical expressions, evaluation of an if-expression 
consists of evaluating the guards in order until they are exhausted or one eval­
uates to true. The corresponding block is evaluated and its value becomes 
the value of the if-expression. If none of the logical expressions evaluates to 
true, the block following else, if any, is evaluated and supplies the value 
of the if-expression. Otherwise, the if-expression has a void value. If the 
expression occurs in a context requiring a non-void value, then all the blocks 
must yield values of the same type, and it is an error for the if-expression to 
yield a void value. 

When its guards are all maps with codomain logical, an if-expression's 
blocks must also be maps whose domains have the same arity as those of its 
guards, and whose codomains must be identical. The result of evaluating 

if C1 then El ... elsif Cn then En else Ed fi 

is a map M whose domain is the union of the domains of the C, and whose 
codomain is the same as the E,. If p is in the domain of M then M [P] is 
computed by 

if C1 [P] then EI [P] ... elsif Cn[P] then Enlp] else Ed/p] fi 

Evaluation of a loop statement causes repeated evaluation of the block 
(which is called the loop body.) The loop always yields a void value. In 
the absence of a control clause, a loop iterates until an exit statement is 
evaluated. 

When an control clause is supplied, the loop body is repeated for each 
value specified by the control clause, which are bound in turn to the control 
identifiers, if present. The loop expression declares any control identifiers, 
whose scope is the loop itself. The control clause specifies a (possibly null) 
domain (a subset of zn for some n > 0.) If there is a single, unbracketed 
identifier, it is bound to the elements of this domain in some sequence. When 
the control identifier clause is a bracketed list of identifiers, [it, ... in], then 
n must be the arity of the domain and for each element, p, of the domain, in 
some order, the i j are bound to p[j] (so that p = [i l , ... I in]). 
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The control clause determines the domain as follows. The domain ex­
pression must have a value, D, of type domain [n] for some n (compatible 
with the control identifiers clause.) The array expression following the key­
word by, if present, must have a value, S, of type [1 .. n] integer or, if 
n = 1, of type integer (which we'll treat as a one-element array in what 
follows). The elements of S must all be positive. H this array expression is 
not present, S defaults to an array whose elements are alil. Infonnally, the 
array expression specifies a step size for each of the indices of the domain. 
More rigorously, the domain specified by the control clause is given by the 
following expression. 

shift( expand( contract (shift(D), S), S), [lwb(D, 1), ... , Iwb(D, n)]) 

If the loop type is for, then the iterations of the loop body happen se­
quen tially. H the domain expression is a rectangular domain constructor, 
its elements are enumerated in lexicographic order (last index varying most 
rapidly in increasing order). Otherwise, no order is guaranteed. When the 
loop type is foraH, the iterations of the loop proceed collaterally (possibly in 
parallel.) Nothing can be guaranteed about the effects of multiple iterations 
writing to the same variable, or in general about the order of any side-effects. 

Evaluation of a block causes the evaluation of its constituent statements 
in order. This evaluation may be interrupted by the evaluation of an exit 
statement. The value of a block is that of its last clause (or void if the last 
clause is a declaration.) A block is a defining scope. 

Exit statements provide means of leaving a loop or subprogram body. 
Evaluating an exit terminates the innermost enclosing loop expression. Eval­
uating a return terminates the evaluation of the innermost dynamically en­
closing subprogram body, yielding the value of the given expression, which 
must be of the type returned by the subprogram, as the value of that body. 
No expression may be supplied for a procedure (a subprogram with a void 
value.) An exit statement may not cause exit from a for all loop. 

Examples 

for [1 N] do Sod; 1* Repeat S N times. *1 

for i from [1 .. N] do S := A(i] + Sod; 
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1* Add elements 1 to N of A to S. *1 

for [i.j] from [1 .. N. 1 .. N] do M := max(M,A[i,j]) od; 
(or p from domainOf(A) do M := max(M,A[pJ) od; 

1* Find the maximum of all elements in A (tvo ways). *1 

for [i,j] from [0 .. N, o .. N] by [1,2J do Sod; 
1* Repeat S for [i,jJ at [0,0] J [1,2], ...• [1,0] J [1,2], .. , *1 

7.2 Subprogram Literals 

Syntax 

<subprogram literal> ::= 
<subprogram header> : <subprogram body> 

<subprogram header> ::= 
[ inline ] <explicit header> 

<explicit header> ::= 
selector [ ( { <formal> ; ... } + ) ] - > <type> 

I proc [ ( { <formal> ; ... }+ ) ] -> <type> 
I proc ( { <formal> j ••• }+ ) 

<formal> ::= 

[ ref] <formal type> { <identifier> , ... } + 
<subprogram body> ::= 

Semantics 

< expression> 
external <identifier> 
forward 

A subprogram may either be a procedure, which performs a computation 
and may return a value, or a selector, which performs a computation and 
returns an assignable variable or a value. A subprogram literal is itself a 
defining scope. 

A subprogram generally takes parameters, whose types must be declared 
in the subprogram header. Parameters may be passed either by value-the 
called routine being passed a copy of the argument-or (as indicated by the 
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keyword ref) by reference-the formal parameter of the called routine is 
identified with the actual parameter during execution of the call. 

The body of a suhprogiam indicates the computation to be performed 
or the object to be returned. When the body is an expression, its type 
must be assignment compatible with that of any return type specified for the 
subprogram. For a selector, that part of the expression denoting its value 
must have the form of an object denotation, and the type of the denoted 
ob ject must be equivalent to that specified as the return type. 

When the body of a subprogram is the clause external P, and the 
subprogram is used in a program, the subprogram identifier P must must be 
declared with an expression as body elsewhere in the compilation or must be 
exported with an expression as body from some compilation in that program. 
The type of P must be that indicated by the header. 

Subprogram literals whose body is the keyword forward may only ap­
pear as the expression in a constant declaration. If the constant declaration 
in which it appears is used in the compilation, then there" must be a corre­
sponding complete constant declaration in the same defining scope, with the 
same identifier, and in which the expression is again a subprogram literal 
with the same type. There may be more than one incomplete declaration for 
a given complete declaration, and each incomplete declaration may appear 
either before or after the corresponding complete declaration. 

The modifier inline has no effect on the type of the subprogram. Subpro­
grams so modified are called inline subprograms. They may not be recursive; 
they may not be exported; and their first use must appear after their com­
plete definition. 

7.3 Subprogram Calls and Partial Closures 

Syntax 

<subprogram closure> ::= 

<procedure-primary> '(' { <closure argument> , ... }+ ')' 
<closure argument> ::= 

<expression> 
<type> 
'?' 
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Semantics 
A subprogram closure first causes evaluation of any arguments. In the 

case of an argument that is a type, evaluation consists of the evaluation of any 
subexpressions within the type. If all arguments to the function are present, 
then execution continues with execution of the body of the subprogram des­
ignated by the procedure primary. In this case, the closure is called a call. 
If r > 0 arguments are missing (that is, are left null, with the surrounding 
commas left in,) then the closure is called a partial closure of the designated 
subprogram. The value of this partial closure is itself a subprogram taking 
r arguments. At least one argument must be supplied in a partial closure. 
When this partial closure's value is itself called with r arguments, the result 
is as if those argument values were inserted for the arguments missing from 
the closure and the result treated as an ordinary call. 

A subprogram with no arguments must have a void value (it is executed 
for its side-effects alone.) To be called, this subprogram's designator must 
be followed by empty parentheses. 

The order in which argument expressions are evaluated is undefined. 

7.4 Casts 

Syntax 

<cast> ::= 
<type identifier> ( <expression> ) 

Semantics 
A cast specifically indicates the type of an expression or coerces a value 

of one type into an isomorphic value of another. In the cast T(E), the value 
of E may be of type T or it may be isomorphic in the following ways . 

• E may be a record and T may be a record type with the same number, 
order, and types of fields. The result is of type T . 

• E may denote a 5ubprogram--or, through overloading, several subprograms­
and T may be a subprogram type. The resulting expression denotes 
those subprograms denoted by E that conform to the type T (Le., that 
unify with T). 
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7.5 Constructors 

Syntax 

<constructor> ::= 
<map constructor> 
<record constructor> 
<rectangular domain constructor> 

<map constructor> ::= 
'[' { <expression> , ... } + 'J' 
'[' <control clause> : <expression> 'J' 

<record constructor> ::= 
< record type identifier> 4 [' { <expression> , ... } + 'J' 

<rectangular domain constructor> ::= 
'[' { <dimension> , ... } + 'J' 

<dimension> ::= 

<integer expression> .. <integer expression> 

Semantics 
Constructors are expressions that build composite objects. The compo­

nents specified by the expressions must conform in type and number to the 
components indicated by this type. Both maps and records may be specified 
extensionally-as a list of expressions. The nth component expression corre­
sponds to the nth field of the record or to a first index of n for a map. In an 
extensional map constructor for a map of arity n, the component expressions 
are maps of arity n - 1. 

A map constructor may also specify a rule (the second form given in the 
syntax.) The control clause (see section 7.1) then specifies the domain of 
the map. For each item of the domain, the expression is evaluated to give 
the image of that value. If the control clause specifies control identifiers, 
these may be used in the expression. Evaluation is as for for all: no order is 
specified and the elements may, in fact, be evaluated in parallel. 

A record constructor for a record type, R, whose fields have types Ti may 
also be applied to arguments whose types are [D] 1i for some (common) 
domain D. The result is of type [D]R; its fields' values at a given domain 
point are those of the arguments at that point. Likewise, such a record 
constructor may also be applied to arguments of type [DI] [D2] T with result 
of type [D1] [D2 ] R, and so forth. 
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The domain constructor yields a domain consisting of all tuples of integers 
such that each integer is in the range denoted by the corresponding element 
of the dimension list. 

Examples 

[ [1 .. 10] 0 ] 
[ i from [1 .. 10] 

7.6 Indexing 

Syntax 

1* The constant 0 map on the domain 1 .. 10. *1 
i] 1* The identity map on the domain 1 .. 10 *1 

<indexed expression> ::= 
<map primary> { <indexer> ... } + 

<indexer> ::= 
'[' { [ <expression> ] , ... } (]' 

Semantics 
The notation" A[ob ... ,on]" is equivalent to "A[Ol]'" [an]." In the fol­

lowing discussion, we assume the latter form. 
Indexing a map produces the value or (assignable) object in the codomain 

of a map corresponding to a given element of the domain. The expressions 
may be integers, in which case the domain value is the tuple consisting of 
those integers, or there may be a single expression in the domain of the map. 
It is an error if the index is not in the current domain of the map. 

An expression E of the form 

A [ ] ... [ ] [in] , ---..-..-
n 

is a selector denoting a map object with the property that 

(Le., these two expressions denote the same variable; taking their value or 
assigning to them have identical results.) 
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7.7 Assignment 

Syntax 

<assignment> ::= 
<left side> ::= <right side> 
<left side> *: = <right side> 

<left side> ::= 
<object expression> 
( { <object expression> , ... }+ ) 

<right side> ::= 
<expression> 
( { <expression> , ... } ) 

Semantics 
An <object expression> in the syntax above refers to an expression that 

designates an (assignable) object (a variable, indexed expression, or selector 
call). An assignment may be to one or to several such objects simultaneously. 
In the latter case, the right side may be either a single, record-valued or map­
valued expression-whose components are assigned in order to the objects 
on the left side--or a parenthesized list of values. There must be identical 
n umbers of values to be assigned as objects to receive them. 

The' :=' operator assigns an entire object of any type. The types of the 
right-side entities must be assignment compatible with those of the corre­
sponding left-side objects. A flexible map object may receive a map value 
with any domain of the appropriate arity. A non-flexible map object may 
only receive maps with identical domains. These rules apply recursively to 
the elements of the codomain. 

The '*: =' operator applies only to maps. The rules governing it are the 
same as for': =', except that it assigns values from the right side(s) only at 
points in the intersection of the domains of the left and right sides. 

7.8 Standard Functions and Operators 

Table 1 gives the standard operators and functions on domains. Tables 2-5 
give the standard operators and functions on maps. Tables 6 and 7 give the 
standard arithmetic and mathematical operators. 
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Expression 

pin D 

lwb(D) 
upb(D) 

arity(D) 
shift(D, S), D « S 

shifteD) 

contract ( D, S) 

expand( D, S) 
accrete(D) 

boundary(D) 

Meaning 

Union of Dl and D2 • 

Intersection of Dl and D 2 • 

Set difference of Dl and D2 • 

where D is a domain of arity nand p is an array of type 
valtype CD): a logical expression that is true iff p is a 
member of D. 

for a domain of arity n: An integer map with domain 
[l..n] (for n = 1, an integer) whose kth component is 
the minimum (lwb) or maximum (upb) value of of the 
kth component of the elements of D. 
yields n for a domain of arity n. 
Where S is of type valtype(D) and n is the arity of D: 
The domain {d + Sid in D}. 
Same as shift(D, -lwb(D)). 

The domain {d div Sid in D}. 

The domain {d*Sld in D}. 
The set of points that are within a distance 1 in all co­
ordinates from some point of D. 
accrete( D) - D. 

Tab1e 1: Opera.tors and functions on domains. 
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Expression 

domainOf(X) 

toDomain(X) 

image(X) 

upb(X) 
lwb(X) 
arity(X) 
X#Y 

shift(X, S), X < < S 
shift(X) 

contract(X, S) 

expand(X, S) 
Xon D 
X(+)Y 

Meaning 

The domain of map X. This may also appear in a left­
hi~d side context if X is a partial map variable. The 
result of an assignment to the domain of X is a map 
whose initial image consists of undefined values. 

where X is a logical map: 
{p E domainOf(X)IX[P]}. 

where X is a map whose is an integer map of arity n: 
the domain of dimension n whose elements are all el­
ements in the image of X-that is, the set {dIX[P] = 
d, for some p}. 
upb( domainOf(X)) 
lwb( domainOf(X)) 
arity( domainOf( X)) 
The composition of X and Y. X and Yare maps; 
Y's codomain must be valtype(domainOf(X)); and 
image(Y) must be a subset of domainOf(X). 

X # Y is a map object (which is assignable if X is 
assignable) such that 

(X#Y)[p] = X[Y[p]]. 
Hence, its domain is domainOf (Y). 

where S is a [l..n] integer (an integer for n = 1), with 
default value -lwb(X), and n is the arity of X: the map 

X # [p from domainOf(X): p-S]. 

X # [p from contract (domainOf (X) J S) = S*p] . 

X # [p from expand (domainOf (X), S): p / S] . 
The map X restricted to domain D. 
where domainOf(X) n domainOf(Y) = {}: the union 
of the graphs of X and Y, whose codomains must be 
identical and whose domains must be of identical arity. 

Table 2: Operators and functions on mapsi part 1. 
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Expression 

Fe 

F <c> 

compress(X) 

compress(X, VV) 

decompress(X, W) 

sort(X, P) 

Meaning 

Concatenation of El , ••• , E2 • The Ei must be I-dimen­
sional maps with contiguous domains and some (com­
mon) codomain T, or values of type T, which are treated 
as one-element maps with lower bound O. At least one 
of the E, must be a map on T. The result has the same 
lower bound as El and an upper bound equal to the sum 
of the lengths of the Ei . 

Assuming that F takes arguments of type 1i and returns 
a result of type T, Fe is a fUDction extending F to argu­
ments of type [Di] Ii, where the D. are domains of the 
same arity, and returns a result of type [D] T, where D 
is the intersection of the Di- The result of applying this 
function is the result of applying F pointwise to the ele­
ments corresponding to the intersection of the argument 
domains. 
for F as above returning type T1: The extension of F to 
arguments of types [Di]T as above, returning a value of 
type [D1]T1 defined by 

F< @ >(xt, ... ,xn ) 

= F@(xI, ... ,xn ) (+) (Xl on (DI - D)). 

where X is a map on a domain of arity 1: The one­
dimensional map, X' with a contiguous domain having a 
lower bound of 1 such that X'[i] is the value of X[Pd, for 
Pi the ith smallest element in the domain of X. 

where VV is a one-dimensional map whose codomain is 
logical: compress(X on toDomain(W)). 

The map X' such that 
compress(X', W) = compress(X). 

where X is a contiguous, one-dimensional map with co­
domain T and P is logical-valued binary function with 
arguments of type T: the map X' with the same domain 
as X that results from permuting the image of X so that 
i < j implies P(X'[i], X'[jD. The permutation is strict: 
the order of irri§ge elements x and y such that P(x, y) 
and P(y, x) is unchanged by the sort. 

Table 3: Opera.tors a.nd functions on maps, part 2. 



Expression 

reduce(X, /, S) 
Meaning 

where X is a rectangular map of arity n and codomain C; 
S = [i b •.• , i,.], 1 ~ i 1 < ... < ir ~ n; and / is a function 
taking two arguments of type C and yielding a result of 
type C. The result, B, is of type T = [*( n - r )]C, or 
T = C if n = r, and is defined as follows. 

B[jt, ... ,ji1 -t,ji1+b"'] = 
/(f(··· f(vt, V2)," .), vrn }. 

or VI if m = 1, where the Vi are the elements 
X[jI, ... , j'l-b k,ji1+b"'} 

for all k for which the expression is defined, taken in some 
undefined order. The domain of B contains only those 
indices for which m > O. 

reduce(X, f, vo) where X is any map with codomain C; Vo is of type C; 
and f is as above. The result is of type C and has the 
value Vo is the domain of X is empty, and otherwise 

f(f(· .. f( Vo, vt}, ... ), vm ) 

where the Vi, i > 0 are the elements of X is some unde­
fined order. 

trace( A, S) reduce( A,proc +, S) 

Table 4: Operators and functions on maps, part 3. 
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Expression Meaning 
outerproduct( A, B) where A and B are maps with rectangular domains of 

dimensions nil and nb and the same codomains: The map 
C defined as follows. 

trans pose( X [, 1r] ) 

flip(X,1r) 

flip(X) 

remap(X,S) 

C[i b .•• , inG,il,'" ,in,,] = 
A[il' ... , inJ*B[jt, ... ,jnb] 

where 1r = [1rt, ... , 1rn] is a permutation of the integers 
between 1 and n, and n is the arity of the map X: The ob­
ject, X', resulting from transposing the indices of X ac­
cording to 1r. Specifically, X'[iW1 , ••• ,iwn1 = X[ib ... ,in]. 
The default for 1r is [2,1]. 
where X is of type [DIJ ... [Dnl T: The map, X' defined 
by the following. 

X'[P1rl] ... [P7rn ] = X[Pl] ... [Pn]' 
The default for 1r is [2,1]. 
where X is a record of maps with identical domains: pro­
duces the map taking p in the common domain to the 
record with field values Fi[P], where the Pi are the fields 
of X. X can also be a map of records, in which case flip 
performs the inverse operation. 
where S = nt, ... , nr: The object resulting from "reasso­
ciating" the indices of X to form an isomorphic object of 
type [Dl]'" [DrlT where T is the appropriate codomain 
and each Di is of type [*ni]' S must be a compile-time 
constant map. 

Table 5: Operators and functions on maps, part 4. 
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Expression 

+, -, *, I, ** 
rem, mod, div 

<, >, <=, >=, =, 1= 

and, or, not 
exp(x), In(x), 10glO(x) 
sin ( x), cos( x ), tan ( x ) 
sqrt( x) 
atan(x), atan(x,y) 

abs(x) 

floor( x), trunc( x), 
round(x), 
toSingle( x), 
toLong(x), 
tolnt(x) 

Meaning 

For scalar arguments, the standard arithmetic operators. The 
division operator, 'I', produces a long real result when its 
operands are integers. The binary operator div applies to 
integers, producing the quotient of its operands truncated to 
an integer. The rem operator is defined by the formula x = 
(x div y)*y + (x rem v), for y -# O. The mod operator is 
defined by x mod y = x - y Lx/yJ , for y -# O. The same 
conversion rules apply as for FORTRAN. 
When applied to maps of the same arity and codomain, these 
operators apply pointwise, producing a map whose domain 
is the intersection of the domains of operands. Finally, the 
operators are also overloaded to allow one operand to be of 
a scalar type T and the other to be a map whose codomain 
has a type that the operator can legally combine with type T. 
In this case, the operand of type T is treated as a constant 
map with the same domain as the other operand. This latter 
definition is recursive; for example, the codomain of the map 
operand may itself be a map. 
Relational operators (/ = is "not equaL") These operators also 
extend to maps as for the arithmetic operators. 

The standard logical connectives. These also extend to maps. 
The standard elementary mathematical functions. They are 
defined on real and complex quantities, yielding results of the 
same type. 

Absolute value. For real and complex quantities, yields a real 
value of the same length, otherwise an integer. 
Scalar coercions. Floor, truDc, and round apply to reals, pro­
ducing results rounded toward - inf, toward 0, and toward 
nearest. The functions, tolnt, toSingle, and to Long apply to 
all types, converting to the nearest integer, single-length real 
(complex), or long real (complex) quantity. The last three 
operations also act on logical values, converting true to 1 or 
1.0 and false to 0 or 0.0. 

Table 6: Arithmetic Operator~~d Elementary Functions, part 1. 



Expression 

max(xt, ... , xn) 
min( x}, ... l xn) 

signum(X) 

realPart(Z), imagPart(Z) 

Meaning 
Maximum and minimum. All operands must be of the 
same type--an integer or real type. 

Returns the integer -1, 0, or 1, depending on whether X 
(which may be an integral or real) is negative, zero, or 
positive. 
Real and imaginary parts of the complex quantity Z. Ei­
ther of type real or long real, depending on the the type 
of Z. 

Table 7: Arithmetic Operators and Elementary Functions, part 2. 

8 Pragmas 

A pragma is an "escape clause" allowing the programmer to give the trans­
lator advice or other directives that have no semantic effect or that do not 
fit naturally into the rest of the language. 

Syntax 

<pragma> ::= 
pragma <pragma identifier> [ '(' { <pragma argument> , ... }+ ')' ] 

<pragma argument> ::= 
<expression> 
<type> 

Semantics 
The possible pragma identifiers are given in Table 8. User declarations of 

these identifiers are ignored in this context. The interpretation of a pragma's 
arguments depends on the particular pragmaj it need not follow the usual 
strictures of FIDIL semantics. 
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Expression 

vectorize( X [, n]) 

rectangular ( X) 

thin(X) 

thick(X) 

, . 

Meaning 

X must be an identifier of a map type, value, or object, or a 
domain type, value, or object, and n must be a positive compile­
time integer constant. The value of n defaults to 1. IT X is a map 
type identifier, the pragma suggests that the compiler attempt 
to vectorize over the nth index of objects declared using identifier 
X (i.e., variables, formal parameters, results of casts to type X). 
If the domain of X has an arity m 2 n, this is the nth index of 
the domain of an X, and otherwise is the (m - n )th index of the 
codomain type of X. 
If X is a domain type identifier, the pragma suggests vectorizing 
over the nth index of X whenever D is used to specify a map 
domain. 
Finally, if X is a map or domain object or value, the suggestion 
applies only to that particular object. 
X is as for vectorize, above. Suggests that the domain (of) X (or 
of all instances of X) be represented as a union of rectangular 
grids. 
X is as for rectangular. Suggests that the domain (of) X (or of 
all instances of X) use a sparse representation. 
X is as for rectangular. Suggests that the domain (of) X (or 
of all instances of X) use a representation consisting of a union 
of rectangles, together with a logical map indicating missing 
domain elements. 

Table 8: Pragmas. 
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